Electrochemical Separation of Ag2S and Cu2S from Molten Sulfide Electrolyte

Author:

Wagner Mary-ElizabethORCID,Allanore AntoineORCID

Abstract

The production of precious metals from Cu-rich sources such as ore products or secondary sources is slow and complex largely due to limited solubility in aqueous electrolytes. This results in sequential processing with various electrolytes and chemistries, where first Cu is electrorefined, followed by Ag, followed by Au and the platinum group metals. These are separate processes, often conducted in separate electrorefining and electrowinning facilities. The chemical properties of molten sulfides, and their ability to operate at a temperature where liquid metal cathodes are used, suggest the possibility of an alternative, streamlined processing route for Cu and precious metals. Unfortunately, little thermodynamic or electrochemical information is available regarding the behavior of Cu and precious metal sulfides in molten sulfide electrolytes. Herein, the relative activity of the Cu2S-Ag2S pseudobinary dissolved in a BaS-La2S3 supporting electrolyte is measured at 1523 K. It was found that the supporting electrolyte favors mixing with Ag2S over Cu2S. Molten sulfide electrolysis of Cu and Ag was conducted, with results in good agreement with the thermodynamic model. It is found that the Ag-Cu cathode chemistry will influence the electrochemical selectivity in the Ag-Cu-Ba-La-S system.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Recovery of silver and gold from copper anode slimes;Chen;JOM Journal of the Minerals, Metals and Materials Society,2015

2. Electrometallurgy of copper refinery anode slimes;Scott;Metallurgical Transactions B,1990

3. Mineralogical characterization of a copper anode and the anode slimes from the La Caridad Copper Refinery of Mexicana de Cobre;Chen;Metallurgical and Materials Transactions B,2005

4. Tellurium distribution in copper anode slimes smelting;Swinbourne;Metallurgical and Materials Transactions B,1998

5. Behavior of antimony and bismuth in copper electrorefining circuits;Beauchemin;Canadian Metallurgical Quarterly,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3