Abstract
Electrochemical atomic force microscopy (EC-AFM) enables measurement of electrode topography and mechanical properties during electrochemical reactions. However, for aqueous-based reactions that make gas products, such as CO2 reduction and water splitting into CO/H2, current densities below 1 mA cm−2 have been necessary to prevent formation of bubbles at the electrode; such bubbles can stick to the AFM probe and prevent further AFM imaging. Here, we demonstrate a novel cell design with a gas-diffusion electrode (GDE) to exhaust the gas products, thereby enabling high current density EC-AFM measurements at 1, 10, and 100 mA cm−2 that are not disturbed by bubble formation at the electrode surface. These experiments revealed a stable morphological structure of Cu catalysts deposited on GDEs during high current density operation. Systematic spatially resolved maps of deformation and adhesion showed no signs of a gas-liquid interface between catalyst particles of the GDE.
Funder
National Renewable Energy Laboratory
European Research Council
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献