Intermediate Temperature Solid Oxide Cell with a Barrier Layer Free Oxygen Electrode and Phase Inversion Derived Hydrogen Electrode

Author:

Zhang Yongliang,Xu Nansheng,Tang Qiming,Huang KevinORCID

Abstract

High-temperature solid oxide cells (SOCs) have fundamental advantages in efficiency and product rate over their low-temperature counterparts. However, the commercial development of SOCs is hindered by cost and reliability. To solve the issues, lowering the operating temperature of SOCs is deemed the best solution. Here we report on our effort toward intermediate temperature (IT) SOCs by developing a barrier layer free high-performance oxygen electrode and open structured hydrogen electrode. The results show that the new oxygen electrode provides reasonably good oxygen electrocatalytic activity at IT range for oxygen reduction and evolution reactions and the open structured hydrogen electrode provides low gas diffusion path for H2/H2O. However, at high electrolysis current density such as 1 A cm−2 and 650 °C, the present oxygen electrode delaminates after 200 h. The phase-inversion derived open structured hydrogen electrode helps gas diffusion but, in the meantime, reduces reactive sites. A proper balance of porosity and number of reactive sites is still needed for future hydrogen electrode development.

Funder

Fuel Cell Technologies Program

Office of Fossil Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3