Abstract
High-temperature solid oxide cells (SOCs) have fundamental advantages in efficiency and product rate over their low-temperature counterparts. However, the commercial development of SOCs is hindered by cost and reliability. To solve the issues, lowering the operating temperature of SOCs is deemed the best solution. Here we report on our effort toward intermediate temperature (IT) SOCs by developing a barrier layer free high-performance oxygen electrode and open structured hydrogen electrode. The results show that the new oxygen electrode provides reasonably good oxygen electrocatalytic activity at IT range for oxygen reduction and evolution reactions and the open structured hydrogen electrode provides low gas diffusion path for H2/H2O. However, at high electrolysis current density such as 1 A cm−2 and 650 °C, the present oxygen electrode delaminates after 200 h. The phase-inversion derived open structured hydrogen electrode helps gas diffusion but, in the meantime, reduces reactive sites. A proper balance of porosity and number of reactive sites is still needed for future hydrogen electrode development.
Funder
Fuel Cell Technologies Program
Office of Fossil Energy
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献