Catalyst Layer Resistance and Utilization in PEM Electrolysis

Author:

Padgett ElliotORCID,Bender Guido,Haug Andrew,Lewinski Krzysztof,Sun Fuxia,Yu Haoran,Cullen David A.ORCID,Steinbach Andrew J.,Alia Shaun M.ORCID

Abstract

Improving utilization, performance, and stability of low iridium (Ir)-loaded anodes is a key goal to enable widespread adoption of polymer electrolyte membrane water electrolysis (PEMWE) for clean hydrogen production. A potential limitation is high ionic or electronic resistance of the anode catalyst layer, which leads to poor catalyst utilization, increased voltage losses, and high local overpotentials that can accelerate degradation. While catalyst layer resistance is relatively well-understood in fuel cells and other porous electrode systems, characterization of these effects is not as well established in PEMWE research. Here we present in-situ methods for measuring catalyst layer resistance in electrolysis cells using a non-faradaic H2/H2O condition as well as methods for calculating the associated voltage losses. These methods are applied to anode catalyst layers based on IrO2 nanoparticles as well as dispersed nano-structured thin film (NSTF) Ir catalysts. Trends with anode catalyst loading and interactions between the porous transport layer and catalyst layer are investigated for IrO2 anodes. Post-mortem microscopic analysis of durability-tested anodes is also presented, showing uneven degradation of the catalyst layer caused by catalyst layer resistance.

Funder

Hydrogen and Fuel Cell Technologies Office

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3