Multi-Scale Multi-Technique Characterization Approach for Analysis of PEM Electrolyzer Catalyst Layer Degradation

Author:

Zaccarine Sarah F.ORCID,Shviro MeitalORCID,Weker Johanna Nelson,Dzara Michael J.,Foster Jayson,Carmo Marcelo,Pylypenko SvitlanaORCID

Abstract

Polymer electrolyte membrane water electrolyzers (PEMWEs) are devices of paramount importance, enabling the large-scale storage of hydrogen from intermittent renewable energy sources such as wind and solar. But a transition towards lower noble metal catalyst loadings and intermittent operation is needed for the widespread utilization of this technology. Although kinetic losses tend to dominate in membrane electrode assembly (MEA) results, it has been suggested that morphological changes and interfaces between the catalyst, ionomer, and membrane will also contribute to overall degradation. Moreover, the combination of degradation to the catalyst layer (CL) constituents will further lead to structural changes that have not been widely explored. The multitude and complexity of degradation mechanisms, which likely occur simultaneously, require a characterization approach that can explore surfaces and interfaces at a range of length-scales to probe chemical, morphological, and structural changes of constituents within the catalyst later. This paper presents a comprehensive characterization approach that features scanning electron microscopy (SEM), scanning transmission electron microscopy with energy-dispersive X-Ray spectroscopy (STEM/EDS), X-Ray photoelectron spectroscopy (XPS), X-Ray absorption spectroscopy (XAS), and transmission X-Ray microscopy (TXM) with X-Ray absorption near-edge structure (XANES) chemical mapping to study degradation of the catalyst layer with a focus on MEAs after intermittent and steady-state operation. Catalyst changes including dissolution, oxidation, and agglomeration were observed, as well as redistribution and dissociation of the ionomer. These smaller-scale changes were found to have a large influence on overall stability of the electrodes: they caused the formation of voids and segregation of constituents within regions of the film. Delamination and collapse of the overall catalyst layer were observed in some instances. Greater changes were observed after an extended 2 V hold compared to IV cycling, but similar degradation mechanisms were detected, which suggests the larger issues would likely also be experienced during intermittent PEMWE operation. These findings would not be possible without such a systematic, multi-scale, multi-technique characterization approach, which highlights the critical importance of detailed analysis of catalyst layer degradation to propose mitigation strategies and improve long-term PEM water electrolyzer performance.

Funder

National Science Foundation

Department of Energy, Office of Science, Office of Basic Energy Sciences

Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3