Carbon Electrocatalysts For Hydrazine Oxidation: Self-Templating Design Of Hierarchical Porosity Using Barium Carbonate Nanoparticles

Author:

Farber Eliyahu M.ORCID,Ojha KasinathORCID,Burshtein Tomer Y.ORCID,Eisenberg DavidORCID

Abstract

To enable hydrazine as a clean fuel in next-generation fuel cells, electrocatalysts are sought for the hydrazine oxidation reaction (HzOR). Nanostructure of the electrocatalyst plays a crucial role in electrocatalytic activity, yet rational design of surface area, hierarchical porosity, doping and conductivity is highly challenging. We now report a systematic investigation into the structural evolution of excellent HzOR electrocatalysts. This hierarchically porous, N-doped carbon was derived by the tunable self-templating strategy from a simple, well-defined metal-organic coordination polymer (barium nitrilotriacetate). To understand the evolution of structure and its effect on electrocatalytic activity, we combined XRD, HRSEM, TEM, XPS, Raman spectroscopy, elemental analysis, N2 porosimetry, and voltammetry. The sizes, shapes and distributions of BaCO3 nanoparticles and agglomerates were found to be temperature-dependent, and strongly correlated to the hierarchical porosity in the ultimate carbons. The final carbons display a multi-modal porosity, high surface areas (up to 1030 m2 g−1), high nitrogen content (up to 2.7 at%), and excellent graphitization. The best catalysts, prepared at 700 °C and 800 °C, begin electro-oxidizing hydrazine at onset potentials as low as 0.34 V vs RHE at pH 14—within a few 10 s mVs of the best metal-free HzOR electrocatalysts ever reported.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3