Abstract
MoB2 is synthesized by the electrochemical reduction of solid MoS2/B mixture in molten NaCl-KCl at 700 °C. Unlike the traditional methods, the electrolysis method employs the low-cost MoS2 feedstock and the boronization reaction happens at a low temperature of 700 °C. The electrochemically induced boronization involves two steps: the electrochemical desulfurization to generate Mo and the reaction of Mo with B to form MoB2. The S2− released from the reduction of MoS2 transfers to the carbon anode and is oxidized to sulfur gas, realizing a green synthetic process. In addition, the influences of molar ratio of MoS2 and amorphous boron and electrolysis cell voltage on the phase composition and morphology of electrolytic products were studied. The obtained MoB2 particles possess a uniform nodular morphology. Overall, this paper provides a straightforward and green process to prepare MoB2 nanoparticles using economically affordable raw materials at low temperature, and this method can be extended to prepare other borides.
Funder
National Natural Science Foundation of China
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献