Abstract
Electrochemical ozone production (EOP) from water is an attractive, green technology for disinfection. Boron doped diamond (BDD) electrodes, grown by chemical vapor deposition (CVD), have been widely adopted for EOP due to their wide anodic window in water and excellent chemical and electrochemical stability. High pressure high temperature (HPHT) synthesis, an alternative growth technique used predominantly for the high-volume synthesis of nitrogen doped diamond microparticles, has been seldom employed for the production of conductive BDD electrodes. In this paper, we demonstrate, for the first time, the use of BDD electrodes fabricated from HPHT conductive BDD microparticles for EOP. The BDD microparticles are first compacted to produce freestanding solid electrodes and then laser micromachined to produce a perforated electrode. The compacted HPHT BDD microparticle electrodes are shown to exhibit high EOP, producing 2.23 ± 0.07 mg L−1 of ozone per ampere of current, at consistent levels for a continuous 20 h period with no drop off in performance. The HPHT electrodes also achieve a reasonable current efficiency of 23%, at a current density of 770 mA cm−2.
Funder
Engineering and Physical Sciences Research Council
H2020 Marie Sklodowska-Curie Actions
Royal Society
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献