Abstract
Direct and accurate monitoring of pH in turbid waters is a challenging task for environmental monitoring and analysis. In this study, iridium oxide (IrO2) with selective sensing ability toward H+ was produced on the surface of iridium (Ir) electrode by rapid self-electrodeposition. IrO2 was deposited on electrode surface by atomic force, which could decrease the adverse effect of the suspended particles in turbid water. Properties of the Ir/IrO2 electrode were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and electrochemical technology. The sensitivity and response time of the Ir/IrO2 electrode for pH determination were assessed, and a rapid and linear pH response of approximately 65 ± 3.5 mV pH−1 was observed across a wide pH range between 1.8 and 11.9. Moreover, the electrode exhibited a good temperature linearity (20 °C–60 °C), low potential drift (0.75 mV h−1), high accuracy (±0.05), and a long life span (up to 30 d). The practical investigation revealed faster equilibrium rate and higher stability of the Ir/IrO2 electrode than that of traditional glass pH electrode. Furthermore, the Ir/IrO2 electrode was successfully used for in situ pH monitoring in 750 formazin turbidity units (FTU) for turbid coastal river water. Therefore, the developed Ir/IrO2 pH electrode offers large applicability for in situ pH monitoring in turbid environmental water matrices.
Funder
the National Key R&D Program of China
the Strategic Priority Research Program of Chinese Academy of Sciences
the Original Innovation Project of Chinese Academy of Sciences
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献