Author:
Goshtasbi Alireza,Pence Benjamin L.,Chen Jixin,DeBolt Michael A.,Wang Chunmei,Waldecker James R.,Hirano Shinichi,Ersal Tulga
Abstract
A computationally efficient model toward real-time monitoring of automotive polymer electrolyte membrane (PEM) fuel cell stacks is developed. Computational efficiency is achieved by spatio-temporal decoupling of the problem, developing a new reduced-order model for water balance across the membrane electrode assembly (MEA), and defining a new variable for cathode catalyst utilization that captures the trade-off between proton and mass transport limitations without additional computational cost. Together, these considerations result in the model calculations to be carried out more than an order of magnitude faster than real time. Moreover, a new iterative scheme allows for simulation of counter-flow operation and makes the model flexible for different flow configurations. The proposed model is validated with a wide range of experimental performance measurements from two different fuel cells. Finally, simulation case studies are presented to demonstrate the prediction capabilities of the model.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献