Controlled Oxygen Incorporation in TiN Coatings via Heat Treatment for Applications in PEMFC Metallic Bipolar Plates

Author:

Hong Yuan-YuanORCID,Wang Xian-Zong,Cadien Ken,Luo Jing-Li

Abstract

Improving the corrosion resistance while maintaining good electrical conductivity is of vital importance for the application of stainless steel in bipolar plates of polymer electrolyte membrane fuel cells (PEMFCs). Transition nitride coatings on steel surfaces, such as TiN, is considered as a possible solution. However, most coatings still fail to exhibit good corrosion resistance and high electrical conductivity simultaneously, especially after corrosion testing. This study prepares TiN on 316L stainless steel (SS) and conducts heat treatment on the TiN deposited samples at different temperatures. The corrosion behaviours of the prepared samples are investigated under the simulated working environments of fuel cell. Our results demonstrate that heat treatment at appropriate temperatures is an effective approach to improve the corrosion resistance of TiN coatings while maintaining a considerable electrical conductivity. The interfacial contact resistance (ICR) test results indicate that high temperature (450 °C) heat treatment has detrimental effect on the electrical conductivity of samples due to the formation of a thick oxide dominated layer, while samples heat treated at 300 °C only form graded layers with suitable oxide amount which endows the coated specimens with a very low ICR value both before and after corrosion tests. This suggests that the heat treatment of TiN coatings under suitable conditions is a feasible strategy to simultaneously achieve an enhanced corrosion resistance and a good electrical conductivity of the TiN coated samples for bipolar plates in PEMFCs.

Funder

Natural Sciences and Engineering Research Council of Canada, Discovery Grant

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3