Inactive Overhang in Silicon Anodes

Author:

O’Brien Aidin I.,Trask Stephen E.ORCID,Salpekar Devashish,Son Seoung-BumORCID,Dunlop Alison R.ORCID,Veith Gabriel M.ORCID,Lu WenquanORCID,Ingram Brian J.,Abraham Daniel P.ORCID,Jansen Andrew N.,Rodrigues Marco-Tulio F.ORCID

Abstract

Li-ion batteries contain excess anode area to improve manufacturability and prevent Li plating. These overhang areas in graphite electrodes are active but experience decreased Li+ flux during cycling. Over time, the overhang and the anode portions directly opposite to the cathode can exchange Li+, driven by differences in local electrical potential across the electrode, which artificially inflates or decreases the measured cell capacity. Here, we show that lithiation of the overhang is less likely to happen in silicon anodes paired with layered oxide cathodes. The large voltage hysteresis of silicon creates a lower driving force for Li+ exchange as lithium ions transit into the overhang, rendering this exchange highly inefficient. For crystalline Si particles, Li+ storage at the overhang is prohibitive, because the low potential required for the initial lithiation can act as thermodynamic barrier for this exchange. We use micro-Raman spectroscopy to demonstrate that crystalline Si particles at the overhang are never lithiated even after cell storage at 45 °C for four months. Because the anode overhang can affect the forecasting of cell life, cells using silicon anodes may require different methodologies for life estimation compared to those used for traditional graphite-based Li-ion batteries.

Funder

Vehicle Technologies Office

Workforce Development for Teachers and Scientists

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3