Analysis of Scale-up Parameters in 3D Silicon-Nanowire Lithium-Battery Anodes

Author:

Schneier Dan,Harpak Nimrod,Menkin Svetlana,Davidi Guy,Goor Meital,Mados Edna,Ardel Gilat,Patolsky Fernando,Golodnitsky Diana,Peled Emanuel

Abstract

New, higher-capacity materials are required in order to address the growing need for batteries with greater energy density and longer cycle life for modern applications. We present here a study of silicon-nanowire (SiNW) anodes, synthesized via a novel, catalysts free and scalable chemical vapor deposition (CVD) on stainless-steel mesh. This is a continuation to our previous paper (Harpak et al., Nano Lett. (2019) http://pubs.acs.org/doi/10.1021/acs.nanolett.8b05127) that describes the progress we recently made. The study is focused on the adaptation of the SiNW anode in various large-scale configurations. Our research efforts have resulted in the successful scale-up of the silicon anode from Si/Li half-cells with high areal capacity of 14 mAh cm−2, to coin cells with commercial cathodes, industrial 1/3AAA cells and proof-of-concept multilayered pouch cells. Testing of our anodes in cylindrical cells demonstrated the applicability of these anodes in commercial lithium-ion batteries that can run for hundreds of cycles, withstanding fast charge and subzero temperatures. An all-solid Si/polymer electrolyte/NCA cell is also demonstrated as a proof of concept (POC). We assign the major degradation mechanism of the SiNW anodes to the growth of the SEI thickness and impedance during cycling. We found that the depth of lithiation/delithiation and the voltage profile of the cell significantly affect cell’s stability.

Funder

Momentum Fund, Ramot Ltd.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3