High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials

Author:

O’Hanlon Sally,McNulty DavidORCID,Tian RuiyuanORCID,Coleman JonathanORCID,O’Dwyer ColmORCID

Abstract

Adding porosity to battery electrodes is sometimes useful for accommodating volumetric expansion, electrolyte access to active materials, or mitigating poor high-rate performance for thicker electrodes. Ordered macroporous electrode such as inverse opals, are a good model system: binder and conductive additive-free, interconnected electrically, have defined porosity consistent with thickness, good electrolyte wettability and surprisingly good behavior in half-cells and some Li-battery cells at normal rates. We show that at high charge and discharge rates, charge storage in macroporous electrode materials can be completely supressed, and then entirely recovered at low rates. Using a model system of inverse opal V2O5 in a flooded Li-battery three-electrode cell electrodes store almost no charge at rates >10 C, but capacity completely recovers when the rate is reduced to <1 C. We show how the IO material is modified under lithiation using X-ray diffraction, Raman scattering and electron microscopy. Chronoamperometric measurements together with a model to fit rate-dependent capacity decay suggests a dependence on the intrinsic out-of-plane conductivity of the electrode. The data show that electrodes with nanoscale dimensions and macroscale porosity are fundamentally limited for high-rate performance if the intrinsic electronic conductivity is poor, even when fully soaked with electrolyte.

Funder

Science Foundation Ireland

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3