Tethered Bilayer Membrane Formation on Silanized Fluorine Doped Tin Oxide Surface

Author:

Gabriunaite Inga,Valincius Gintaras,Žilinskas Albinas,Valiūnienė AušraORCID

Abstract

Silane compound was synthesized via click chemistry and a mixture of synthesis products without purification was used to form the self-assembled monolayers on metal oxide conducting films of fluorine doped tin oxide (FTO). Silanized FTO surfaces triggered rupture of multilamellar vesicles and formed electrically insulating tethered bilayer membranes (tBLMs). In contrast to well-known hybrid bilayer membranes on silane monolayers such as ones formed from octadecyltrichlorosilane, tBLMs on FTO contained water-ion reservoir between solid surface and phospholipid bilayer sheet. They demonstrated biological relevance and ability to reconstitute the pore-forming protein channels such as α-hemolysin from Staphylococcus aureus and melittin. The addition of cholesterol to tBLMs decreased the membrane-damaging effect of melittin, while the opposite was observed in the case of α-hemolysin. The tBLMs can be regenerated multiple times without losing their functionality. The described methodology (both synthesis and formation of anchor monolayer) can be extended to any oxide film surface by properly adjusting chemical composition of molecular anchor and silanization conditions. This makes the proposed biomimetic membrane system attractive for various applications including biomedical sensors for the detection of pore-forming toxins.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3