High Speed Atomic Force Microscope Observation of Polyethylene Glycol Adsorption on Au(100)

Author:

Esaki Rei,Yasuda Yohei,Kotani Norito,Matsushima HisayoshiORCID,Ueda MikitoORCID

Abstract

Polyethylene glycol (PEG) plays an important role as an inhibitor of the electrodeposition. In this study, we investigated the potential dependence of PEG (molecular weight: 3000) adsorption and desorption processes on the gold single crystal substrate. High speed atomic force microscope (HS-AFM) was applied for observing the dynamic behaviors of the nucleation and the growth of PEG adsorption. The in situ observation was conducted at the several potentials where the cyclic voltammogram measurement showed the broad peak of the reduction current. As the applied potential became more cathodic, the adsorption morphology changed from film-like, through the sphere, to the large irregular cluster. When the potential was switched to anodic potential, HS-AFM could show the dissolution process of PEG. Finally we demonstrated the effect of the tip force by modifying the feed-back circuit of AFM.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3