Effect of Amino Acids on the Corrosion and Metal Release from Copper and Stainless Steel

Author:

Vander Zee Alyssa,Laundry-Mottiar Lila,Nikpour Saman,Matin SinaORCID,Henderson Jeffrey D.ORCID,Eduok Ubong,Hedberg Jonas F.ORCID,Zagidulin Dmitrij,Biesinger Mark C.,Noël James J.ORCID,Hedberg Yolanda S.ORCID

Abstract

Copper (Cu) and stainless steel 316 L are widely used for biomedical applications, such as intrauterine devices and orthopedic/dental implants. Amino acids are abundantly present in biological environments. We investigated the influence of select amino acids on the corrosion of Cu under naturally aerated and deaerated conditions using a phosphate-free buffer. Amino acids increased the corrosion of Cu under both aeration conditions at pH 7.4. Cu release was also significantly (up to 18-fold) increased in the presence of amino acids, investigated at pH 7.4 and 37 °C for 24 h under naturally aerated conditions. Speciation modelling predicted a generally increased solubility of Cu in the presence of amino acids at pH 7.4. 316 L, investigated for metal release under similar conditions for comparison, released about 1,000-fold lower amounts of metals than did Cu and remained passive with no change in surface oxide composition or thickness. However, amino acids also increased the chromium release (up to 52-fold), significantly for lysine, and the iron release for cysteine, while nickel and molybdenum release remained unaffected. This was not predicted by solution speciation modelling. The surface analysis confirmed the adsorption of amino acids on 316 L and, to a lower extent, Cu coupons.

Funder

Canada Research Chairs

Western University

Natural Sciences and Engineering Research Council of Canada

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3