Electrodialysis of Lithium Sulphate Solution: Model Development and Validation

Author:

Asadi Anahita,Kang Bolin,Harandi Hesam Bazargan,Jung Joey Chung-Yen,Shen Zuguo,Sui Pang-ChiehORCID

Abstract

A comprehensive mathematical model is proposed to study the transport phenomena in an Electrodialysis (ED) process employed to recover lithium hydroxide and sulfuric acid from the lithium sulphate solution derived from a recycling process of spent lithium-ion battery material. The model is developed based on the conservation equations of mass and ions, and considers electrolyte solutions consisting of mono- and multivalence ions. The concentration polarization at ion exchanged membranes (IEMs) and their adjacent diffusion boundary layers as a function of the applied current, inlet concentrations and flow rate are computed. Experimental data from a three-compartment ED cell are used for validation. A parametric study is performed to evaluate the impact of parameters on transmembrane fluxes of ion and water. It is revealed that increasing current leads to the enhancement of the transmembrane water and concentration polarization across IEMs. Feeding solutions consisting of smaller ions result in lower water transfer through IEMs. Raising the lithium concentration at the dilute channel increases the LiOH concentration due to reduced transmembrane water transfer. Using the uncertainty propagation method, it is found that current and counter-ion radius are the most influential parameters affecting the outlet concentration of concentrate channel and transmembrane water transfer.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3