A Screen-Printed Potentiometric Sensor for Stability Indicating Assay and Real-Time Monitoring of Trospium Chloride Dissolution Profile in its Pharmaceutical Dosage Form

Author:

Abdel-Haleem Lamia M.,Ramadan Nesrin K.,El-Rahman Mohamed K. Abd,Galal Maha M.ORCID

Abstract

According to FDA guidance, a biowaiver concept declares that dissolution testing could be approved as a replacement strategy for bioequivalence studies and/or in vivo bioavailability. From the analytical chemistry standpoint, the shift from the classically developed offline methods to the highly integrated miniaturized inline analyzers is one of the pioneering ways that would modernize future of in-vitro - in-vivo correlation (IVIVC). The emergence of screen-printed electrodes (SPE) is now making the move from successive sampling steps and off-line measurements to real-time and in-line monitoring. Recently, “SPE” potentiometric sensor was presented as real-time analyzer that can offer similar analytical results as separation-based chromatographic techniques. Thus, the main objective of this paper is to design a real-time SPE for in situ monitoring of the dissolution of trospium chloride (TRO) in neutral media. Validation of the proposed sensor was performed according to the IUPAC commendations. The measurements performed with this sensor showed an accuracy of average recovery 100.50% and standard deviation of less than 1.0%, also the repeatability and intermediate electrode variabilities were less than 1.0 and 1.3%, respectively. The developed sensor was successfully used for direct observation of the dissolution profile without any need for an extraction step or sample preparation.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3