Unravelling the Contribution of Kinetics and Mass Transport Phenomena to Impedance Spectra in Vanadium Redox Flow Batteries: Development and Validation of a 1D Physics-Based Analytical Model

Author:

Vivona DanieleORCID,Messaggi MirkoORCID,Baricci AndreaORCID,Casalegno AndreaORCID,Zago MatteoORCID

Abstract

Vanadium redox flow battery technology can support the spread of energy storage in stationary applications and allow higher penetration of renewables in the electric grid. Currently, its market competitiveness is hindered by low power density, which stems from complex interplay between kinetic and mass transport losses. The quantitative interpretation of experimental observations should rely on physics-based models, which allow a consistent comparison of different operative conditions. In this work, a fast analytical physics-based 1D model of the impedance of vanadium flow battery is presented and validated with respect to experimental data. The model, made available online at http://mrtfuelcell.polimi.it, employs a macro-homogeneous approach and considers losses due to kinetics, reactant distribution within the electrode (Sigracet® SGL 39 AA carbon paper), convection in flow channel and vanadium transport to electrode surface. Additionally, analytical expressions of contributions to impedance of single physical phenomena are derived through an asymptotical analysis. The results show that, at negative electrode, transport of ions to active surface is the limiting phenomenon at lower flow rates, while at higher flow rates depletion of reactants within electrode becomes critical together with charge transfer processes. At positive electrode, the main contribution to performance loss is the vanadium transport to electrode surface.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3