Selective Oxidation of a Medium-Mn Third Generation Advanced High Strength Steel during Austenitizing and Intercritical Annealing

Author:

Bhadhon K. M. H.ORCID,McDermid J. R.ORCID

Abstract

The effect of the simulated continuous galvanizing line N2−5 vol% H2 process atmosphere oxygen partial pressure (pO2) on the external and internal selective oxidation of a prototype medium-Mn third generation (3G) advanced high strength steel was determined during a two-stage heat treatment cycle (i.e., austenitizing and intercritical annealing) which had previously yielded 3G properties. Thick external oxides (∼200 nm) were observed after the austenitizing heat treatment, regardless of the process atmosphere pO2 employed. An intermediate flash pickling step was successful in reducing the external oxide thickness significantly (to ∼30 nm) along with revealing some extruded metallic Fe nodules on the surface. The austenitizing heat treatment also resulted in a solute-depleted surface layer with a minimum thickness of 2 μm. This solute-depleted layer inhibited the formation of external oxides during intercritical annealing, resulting in a surface similar to that observed after flash pickling comprising a near-pure Fe surface with isolated, nodular external oxides. These surfaces are promising in terms of successful reactive wetting of this prototype medium-Mn steel during subsequent continuous hot-dip galvanizing.

Funder

International Zinc Association

Natural Sciences and Engineering Research Council of Canada

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3