Relationship between Mechanical and Electrochemical Property in Silicon Alloy Designed by Grain Size as Anode for Lithium-Ion Batteries

Author:

Ji Sang-Gu,Umirov NurzhanORCID,Kim Hyang-Yeon,Kim Sung-SooORCID

Abstract

While silicon has a very high theoretical capacity but has relatively the stresses produced by volume changes during charge/discharge cycling lead to structural modifications (around 300%). To overcome this problem, many studies are being conducted to commercialize silicon. Herein, we produced amorphous silicon alloy using a melt-spinning method. Then, through annealing under various temperatures, we gradually recrystallized the silicon phase. Average silicon grain sizes were 70 and 130 nm for silicon alloys annealed at 800 and 873 K, respectively. The initial reversible capacities of silicon alloy-based anodes were 844.3 (800 K) and 865.1 mAh g−1 (873 K), and, after 100 cycles, capacity retention rates were found to be 68.5 (800 K) and 40.5% (873 K). At this stage, to elucidate the effect of grain sizes on cycle life retention rate, we determined mechanical hardness through nanoindentation. And, by measuring volume expansion values between cycles through in situ dilation, we could identify the relationship between electrochemical property and mechanical hardness of silicon alloy samples depending on recrystallized grain sizes. Thus, by analyzing the mechanical and electrochemical properties of silicon alloys depending on silicon grain sizes, we want to highlight the importance of controlling silicon grain size.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3