High-precision State of Charge Estimation of Lithium-ion Batteries Based on Joint Compression Factor Particle Swarm Optimization-Forgetting Factor Recursive Least Square-Adaptive Extended Kalman Filtering

Author:

Yang JunjieORCID,Wang ShunliORCID,Chen Lei,Qiao Jialu,Fernandez Carlos,Guerrero Josep M.

Abstract

Accurate state of charge (SOC) estimation is an important basis for battery energy management and the applications of lithium-ion batteries. In this paper, an improved compression factor particle swarm optimization-forgetting factor recursive least square (CFPSO -FFRLS) algorithm is proposed, in which the forgetting factor is optimized to identify more accurate parameters for high-precision SOC estimation of lithium-ion battery. In order to improve the SOC estimation accuracy, a dual noise update link is introduced to the traditional extended Kalman filter (EKF), which enhances the algorithm’s ability to adapt to noise by updating the process and measurement noises in real time. The experimental results of parameter identification and SOC estimation show that the CFPSO-FFRLS algorithm proposed significantly improves the accuracy of parameter identification, and the joint CFPSO-FFRLS-AEKF algorithm can accurately estimate the SOC of lithium-ium battery under different working conditions. Under HPPC, BBDST and DST working conditions, the mean absolute errors of SOC estimation are 1.14%, 0.78% and 1.1%, which are improved by 42.71%, 65.79% and 39.56% compared with FFRLS-EKF algorithm, and the root mean square errors are 1.18%, 0.99% and 1.11%, improved by 44.86%, 65.98% and 51.74%, respectively.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3