A Finite Element Formulation to Three-Dimensionally Resolve Space-Charge Layers in Solid Electrolytes

Author:

Sinzig StephanORCID,Hollweck Thomas,Schmidt Christoph P.ORCID,Wall Wolfgang A.ORCID

Abstract

All-solid-state batteries are seen as promising candidates to replace conventional batteries with liquid electrolytes in many applications. However, they are not yet feasible for many relevant applications. One particular question of interest is the identification of physical effects inside all-solid-state batteries and their quantitative influence on the performance of the entire battery cell. Simulation models can contribute to answering the aforementioned question by systematical studies, e.g. enabling or disabling certain physical effects. Especially the influence of space-charge layers (SCLs) is heavily discussed in the scientific community. So far, the different length scales of SCLs and the microstructure of a battery cell made a spatial discretization of realistic microstructures with resolved SCLs infeasible. However, thermodynamically consistent continuum models which are applied to simplified geometries are already established in the literature. In this work, we propose a model that enables the prediction of the spatial development of SCLs within geometrically resolved microstructures by exploiting that effects in SCLs are predominantly one-dimensional. With the proposed approach it is possible to quantify the geometric influence of realistic microstructures on the formation process of SCLs. SCLs in realistic microstructures remarkably differ from SCLs computed with simplified one-dimensional models which are already established in the literature.

Funder

Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3