Abstract
The energy storage mechanism operating in carbon-based supercapacitors using ionic liquids as electrolytes is not yet fully understood. In this paper, the interactions of ions of two widely used ionic liquids, i.e. EMImTFSI and EMImBF4, with a high specific surface area microporous carbon are investigated. Galvanostatic cycling experiments performed on each electrode and in the full cell demonstrate that a specific energy close to 46 Wh kg−1 can be achieved with this carbon. More interestingly, impedance spectroscopy studies reveal the presence of some unusual behavior, such as the presence of inductive elements in some of the electrodes, either in the positive or in the negative electrode. These inductive elements are identified, for the first time, as another type of possible experimental evidences of some phenomena previously proposed, such as ion-swapping or co-ions desorption, both phenomena leading to the formation of the superionic state.
Funder
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
Ministerio de Ciencia, Innovación y Universidades
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献