Construction of In2S3/Ag-Ag2S-AgInS2/TNR Nanoarrays with Excellent Photoelectrochemical and Photocatalytic Properties

Author:

Qi ShihanORCID,Yin Zhuangzhuang,Liu Zhu,Xu KangORCID,Zhang Miao,Sun Zhaoqi

Abstract

In this work, a novel and efficient In2S3/Ag-Ag2S-AgInS2/TNR photocatalyst was successfully synthesized by a facile hydrothermal and wet chemical method. The In2S3/Ag-Ag2S-AgInS2/TNR has a greatly increased range of light absorption with sustained absorption intensity compared to the unmodified TNR arrays. In the photoelectrochemical test, the best transient photocurrent of the sample can reach 350 μA cm−2, which is 23.3 times higher than TNR (15 μA cm−2). In the photocatalytic degradation test of MO, In2S3/Ag-Ag2S-AgInS2/TNR exhibited the highest photocatalytic degradation efficiency which could reach 91.7%, 5.5 times higher than that of TNR (16.7%), much higher than many previously reported photocatalysts. The outstanding photoelectrochemical and photocatalytic properties of the samples is primarily owing to the formation of the core–shell structure and the synergistic effect of the composite material, which effectively facilitate the separation and migration of photogenerated electron-hole pairs and inhibit their recombination, thus enhancing the photoelectrochemical and photocatalytic performance.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3