Investigation of the Direct Contact Prelithiation of Silicon-Graphite Composite Anodes for Lithium-Ion Batteries

Author:

Stumper BenediktORCID,Mayr AndreasORCID,Mosler Kathrin,Kriegler JohannesORCID,Daub RüdigerORCID

Abstract

Silicon is a promising anode material for lithium-ion batteries due to its high theoretical capacity. However, current lithium-ion batteries with high silicon shares in the anodes suffer from rapid capacity fading. The continuous reformation of the solid electrolyte interphase due to particle volume changes during lithiation consumes cyclable lithium. Direct contact prelithiation is a method to counteract lithium losses during the formation and operation of lithium-ion batteries. By providing excess lithium to the anodes during battery cell production, the cycle life of lithium-ion batteries can be increased. Within this work, the process characteristics of direct contact prelithiation and its effect on battery performance are investigated experimentally. Therefore, silicon-graphite composite anodes were mechanically prelithiated using lithium foil and incorporated in lithium-ion battery pouch cells. The prelithiation time and the cell pressure were systematically varied to obtain insights in to the process behavior. Additionally, the lithium quantity was controlled by lithium foil thickness and sample geometry. The prelithiation state of the anodes was examined by optical analysis and measurements of the cells’ open circuit voltage. The effect of anode prelithiation on the battery cell cycling behavior showed a cycle life increase of up to 150% compared to reference cells with non-prelithiated anodes.

Funder

Horizon 2020 Framework Programme

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3