From Lab to Manufacturing Line: Guidelines for the Development and Upscaling of Aqueous Processed NMC622 Electrodes

Author:

de Meatza IratxeORCID,Urdampilleta Idoia,Boyano Iker,Castrillo Iker,Landa-Medrano ImanolORCID,Sananes-Israel SusanORCID,Eguia-Barrio Aitor,Palomares VerónicaORCID

Abstract

Lithium-ion batteries (LIBs) have facilitated the transition to a more sustainable energy model. Paradoxically, current high energy cathodes are industrially processed using organic solvents, which are deleterious for the environment. In this work, LiNi0.6Mn0.2Co0.2O2 (NMC622) high-energy cathode electrode was prepared at laboratory scale following a more environmentally friendly aqueous route. Several steps in the preparation of the electrodes (such as the drying temperature, drying air flux or pH buffering) were thoroughly optimized to enhance the quality of the water-processed electrodes. Afterwards, the recipe developed at laboratory scale was upscaled to a semi-industrial electrode coating line, to analyze the viability of the developed processing conditions into a realistic electrode manufacturing environment. The electrodes obtained were tested in full coin cells using graphite-based anodes as counter electrodes. Interestingly, the cycling performance of the cells based on water-processed electrodes was higher than that of organic-processed ones. It is evidenced that it is possible to manufacture electrodes for high energy density LIBs following environmentally friendly, cheaper, and industrially implementable electrode processing methods with no-penalty in the electrochemical performance.

Funder

European Commission

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3