Insights into the Sodiation Kinetics of Si and Ge Anodes for Sodium-Ion Batteries

Author:

Zhang Jia,Zheng TianyeORCID,Cheng Ka-wai Eric,Lam Kwok-ho,Boles Steven T.ORCID

Abstract

Group IVA elements exhibit interesting Na storage capabilities due to the success of their Li alloy analogues. However, beyond hard carbon, they remain poorly understood as anodes for sodium-ion batteries (SIBs). Here, kinetic investigations of the electrochemical sodiation of Si and Ge are conducted using liquid electrolytes and half-cell configurations. Sodiation of Ge is found to be kinetically limited rather than thermodynamically limited. Either increasing temperature or decreasing sodiation rate can facilitate easier transformations from Ge to Na-Ge phases. A critical temperature seems to exist between 50 °C and 60 °C, beyond which a higher sodiation capacity is evident. The phase transformations are analyzed using Kolmogorov–Johnson–Mehl–Avrami theory. Following a one-dimensional growth, the Ge to NaGe4 is determined to be diffusion limited whereas NaGe4 to Na1+x Ge is controlled by reaction speed. Moreover, the Arrhenius equation is employed to investigate the temperature dependence on both phase transformations, giving activation energies of ∼50 kJ·mol−1 and ∼70 kJ·mol−1, respectively. Schematic models are proposed to elucidate the sodiation mechanisms, potentially influencing sought-after advancements in cell formats and classifications. Not only does this work lay the foundation for efforts on the Ge-based anodes, but also provides analogous kinetic information to Si/Sn-based ones for SIBs.

Funder

Norges Teknisk-Naturvitenskapelige Universitet

Hong Kong Polytechnic University

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3