Abstract
Single nanopores in silicon nitride membranes are asymmetrically modified with Nafion and investigated with scanning ion conductance microscopy, where Nafion alters local ion concentrations at the nanopore. Effects of applied transmembrane potentials on local ion concentrations are examined, with the Nafion film providing a reservoir of cations in close proximity to the nanopore. Fluidic diodes based on ion concentration polarization are observed in the current-voltage response of the nanopore and in approach curves of SICM nanopipette in the vicinity of the nanopore. Experimental results are supported with finite element method simulations that detail ion depletion and enrichment of the nanopore/Nafion/nanopipette environment.
Funder
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献