Electrochemical Technique to Characterize the High Temperature Oxidation Behavior of Materials

Author:

Verrijt Koen J. H.ORCID,Poerschke David L.ORCID

Abstract

This work demonstrates an approach using solid state electrochemical cells to study the long-term oxidation of materials at 800 °C. The capability of zirconia-based cells to control the oxygen partial pressure was first evaluated using an empty chamber. For most voltages applied to the pump cell, the steady state sensor voltage matches the pump voltage, leakage rates are low, and response times are short, allowing precise and prompt control over the chamber atmosphere. The technique was validated by measuring the oxidation of niobium and nickel. Niobium was oxidized at pump voltages ranging from 0 mV to +500 mV; decreasing the oxygen partial pressure around the specimen reduces the oxidation rate. Comparing the integrated oxidation rate with the weighed mass gain showed good agreement. Measured oxidation rates for nickel were of order 1 μg h−1, illustrating the sensitivity of this technique. For higher oxidation rates, a depression in oxygen partial pressure was observed around the specimen. Improved control over the oxidation potential was achieved by using a sensor cell to dynamically tune the pump voltage. Rates for both metals are compared to literature reports using other techniques.

Funder

Division of Materials Research

Office of Naval Research

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3