A Bipolar Separator for Autonomous Suppression of Dendrite Penetration in Zinc Metal Batteries

Author:

Lee YoungjuORCID,Bai PengORCID

Abstract

Zinc metal anodes are attracting much attention to enable more economical and sustainable energy storage devices. However, like other metal anodes, dendritic growths and penetrations of porous separators are still challenging to eliminate. Introducing negative surface charges on the pore walls of separators have been exploited to enforce a uniform incoming Zn-ion flux toward more uniform electrodeposition, but penetrations induced by localized high current densities still remain in available systems. In this work, we report, for the first time, a bipolar separator that exploits the distinct electroosmotic effects of the negative and the positive surface charges. The surface charge effects on Zn dendrite growths were first verified in transparent capillary cells via operando video microscopy. By stacking the positively charged separator over the negatively charged separator as our proof-of-concept, the system offers preemptively a uniform Zn-ion flux through the negative layer yet starve-stops local metal growths that already penetrated the negative layer autonomously. Chronopotentiometry experiments with the symmetric cells reveal extended short-circuit time compared to control cells. Galvanostatic cycle-life experiments of full cells with the bipolar separator showed excellent cycle life of 5,000 cycles at the rate of 10 C, without signs of metal penetration.

Funder

National Science Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3