Parametric Study of the Influence of Support Type, Presence of Platinum on Support, and Ionomer Content on the Microstructure of Polymer Electrolyte Fuel Cell Catalyst Layers

Author:

Kariuki Nancy N.ORCID,Haug Andrew T.,Park Jae H.,Lindell Matthew J.ORCID,Myers Deborah J.ORCID

Abstract

Ultra-small angle X-ray scattering (USAXS) was employed to investigate the effects of carbon support type, the presence of platinum on carbon, and ionomer loading on the microstructure of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs). Particle size distributions (PSDs), obtained from fitting the measured scattering data were used to interpret the size of carbon aggregates (40–300 nm) and agglomerates (>400 nm) from two-component carbon/ionomer and three-component platinum/carbon/ionomer CLs. Two types of carbon supports were investigated: high surface area carbon (HSC) and Vulcan XC-72. CLs with a range of perfluorosulfonic acid (PFSA) ionomer to carbon (I/C) ratios (0.2–1.2) and also with perfluoroimide acid (PFIA) ionomer were studied to evaluate the effect of ionomer on CL microstructure. The carbon type, the presence of platinum, and ionomer loading were all found to significantly impact carbon agglomeration. The extent of Pt/C agglomeration in the CL was found to increase with increasing ionomer and platinum concentration and to decrease with increasing carbon surface area. Platinum electrochemically-active surface area (ECSA) and local oxygen transport resistance (RnF) were correlated to the CL microstructure to yield relationships affecting electrode performance.

Funder

U.S. Department of Energy,Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office (DOE-FCTO) FC-PAD and M2FCT

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3