Parameters Optimization for Electrophoretic Deposition of Mn1.5Co1.5O4 on Ferritic Stainless Steel Based on Multi-Physical Simulation

Author:

Zhou Yaqin,Mao Jingwen,Wang EnhuaORCID,Zhang HongguangORCID

Abstract

Solid oxide fuel cells (SOFCs) are an effective and sustainable energy conversion technology. As operating temperatures decrease, metal interconnects and supports are widely employed in SOFCs. It is critical to apply a protective coat on ferritic stainless steel (FSS) to suppress Cr evaporation and element interdiffusion under high temperatures. Electrophoretic deposition (EPD) is a promising approach for depositing metal oxides on FSS substrate. Here, a method based on 3D multi-physical simulation and orthogonal experimental design was proposed to optimize deposition parameters, including applied voltage, deposition time, and electrode distance. The EPD process to deposit Mn1.5Co1.5O4 particles in a suspension of ethanol and isopropanol was simulated and the effects of these three factors on the film thickness and uniformity were analyzed. The results indicate that applied voltage has the greatest impact on deposition thickness, followed by deposition time and electrode distance. Meanwhile, deposition time exhibits a more significant effect on film unevenness than applied voltage. Additionally, the particle-fluid coupling phenomenon was analyzed during the EPD process. In practice, these deposition parameters must be selected appropriately and the deposition time must be controlled to obtain a uniform coating. The proposed method can reduce cost and shorten the design period.

Funder

National Key Research and Development Program of China

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3