Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part II. Rate Capability, Long-Term Stability, and Thermal Behavior

Author:

Kraft LudwigORCID,Zünd TanjaORCID,Schreiner DavidORCID,Wilhelm RebeccaORCID,Günter Florian J.ORCID,Reinhart Gunther,Gasteiger Hubert A.ORCID,Jossen AndreasORCID

Abstract

A lithium- and manganese-rich layered transition metal oxide-based cathode active material (LMR-NCM) with a reversible capacity of 250 mAh g−1 vs graphite is compared to an established NCA/graphite combination in multilayer lithium-ion pouch cells with a capacity of 5.5 Ah at a 1C discharge rate. The production of the cells, the electrode characterization as well as the formation is described in Part I of this study. In Part II, the two cell types are evaluated for their rate capability and their long-term stability. The specific capacity of the LMR-NCM pouch cells is ≈30% higher in comparison to the NCA pouch cells. However, due to the lower mean discharge voltage of LMR-NCM, the energy density on the cell level is only 11% higher. At higher discharge currents, a pronounced heat generation of the LMR-NCM pouch cells was observed, which is ascribed to the LMR-NCM voltage hysteresis and is only detectable in large-format cells. The cycling stability of the LMR-NCM cells is somewhat inferior due to their faster capacity and voltage fading, likely also related to electrolyte oxidation. This results in a lower energy density on the cell level after 210 cycles compared to the NCA pouch cells.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3