Abstract
Development of robust alkaline oxygen evolution reaction electrocatalysts is crucial for the efficiency of water splitting. Herein, Fe-MOF nanocones array on nickel foam are synthesized by introducing sodium hypochlorite, leading to Cl substitution of terephthalic acid in Fe-MOFs (Fe-MOF-Cl/NF). Experimental results show that Fe-MOF-Cl/NF exhibits enhanced OER activity over Fe-MOF/NF, lowering η
50 from 292.4 to 222.7 mV. In combination with density function theory calculations, the improved OER performance is attributed to engineering electronic structure of Fe sites which accelerate the third step from *O to *OOH, and promote OER kinetics. Additionally, Fe-MOF-Cl/NF can retain catalytic activity for 100 h.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献