Role of Copper on Repassivation of Stainless Steel Pits

Author:

Hariharan KarthikeyanORCID,Guo XiaoleiORCID,Srinivasan JayendranORCID,Frankel Gerald S.ORCID,Schindelholz Eric J.ORCID

Abstract

The effect of copper on the repassivation of pits in stainless steels was examined through potentiodynamic polarization of one-dimensional (1D) pits at two different downward scan rates for 17–4 PH stainless steel. Post-mortem characterization of tested 1D pits revealed that copper enriches on the pit surface, which most likely occurs through reduction of CuCl3 2− inside the pit during the downward potential scan. 1D diffusion analysis revealed significant amounts of copper replating can occur before the attainment of critical pit chemistry for repassivation when scanning at a high rate, which complicates repassivation potential (E rp) measurements. Copper replating may lead to higher value of measured E rp by, (i) reducing the measured net anodic current density, (ii) blocking the dissolution of stainless steel underneath the copper deposits, (iii) enhancing local hydrogen evolution kinetics to raise the pH of the pit bottom. The relative strength of the copper replating effect is controlled by scan rate or more generally, pit growth conditions and local pit chemistry. Implications of the copper replating effect on measuring a lower-bound value of repassivation potentials are discussed in light of existing repassivation potential measurement techniques. The pit growth conditions that could lead to copper replating in real pits are discussed.

Funder

Momental Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3