Impact of Cathodic Electric Double Layer Composition on the Performance of Aprotic Li-O2 Batteries

Author:

Isaev Valerii V.ORCID,Sergeev Artem V.ORCID,Zakharchenko Tatiana K.ORCID,Itkis Daniil M.ORCID,Groß AxelORCID,Yashina Lada V.ORCID

Abstract

One of the difficulties limiting the development of high capacity Li-O2 batteries is the positive electrode passivation by the discharge product Li2O2 which is deposited mostly due to the second electron transfer of oxygen reductionwhich requires the presence of Li+ in the Stern layer. To suppress the passivation and shift the reaction zone of Li2O2 formation towards the electrolyte bulk, we propose to use additional cations in the electrolyte. Using molecular dynamics simulations, we investigate the ability of various cations to replace Li+ ions in the first cation layers near the electrode, with EMI+ (1-ethyl-3-methylimidazolium) and PP13+ (N-methyl-N-propylpiperidinium) showing pronounced effects. However, our experimental studies including cycling voltammetry and discharge capacity measurements in high and low donor number solvents reveal practically no effect of such addition. Therefore, Li+ should be fully eliminated from electron transfer zone, and this is possible by anchoring of additional cations according to the simulations. We optimized the surface density for these cations, although the experimental support of this approach looks challenging.

Funder

Russian Science Foundation

German Science Foundation DFG

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3