High Volumetric Energy Density LiFePO4 /C Cathode Materials Synthesized by Dodecyl Polyglucoside-Assisted Glucose-Polyethylene Glycol Composite Carbon Source

Author:

Li Weida,Gu Haoyan,Yang Hao,Li Quanchen,Li Xinran,Wang Yaping,Liang GuangchuanORCID

Abstract

High volumetric energy density LiFePO4/C cathode materials were synthesized by wet ball milling, spray drying, and carbothermal reduction method using glucose and polyethylene glycol (PEG) as composite carbon sources and dodecyl polyglucoside (C12APG) as a milling aid. With the introduction of C12APG during the ball milling process, the prepared cathode materials have uniform particle size (100–200 nm in diameter) and regular primary particle morphology. In addition, PEG substitutes part of glucose as a carbon source, resulting in low carbon content and high graphitization of residual carbon after high-temperature calcination. The prepared LiFePO4/C cathode materials have a high powder compaction density (2.68 g cm−3) and excellent electrochemical performance (discharged capacities of 161.2 and 141.7 mAh g−1 at 0.2 C and 5 C, and cycle retention of 98.6% for 100 cycles at 1 C/1 C). This LiFePO4/C composite was assembled into 14500-type cylindrical batteries with a compaction density of 2.62 g cm−3 for the positive electrode. The volumetric energy densities of the positive electrode were 1135.18 Wh L−1 and 918.16 Wh L−1 at 0.2 C and 5 C, respectively.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3