Abstract
Metal dissolution and redeposition are considered to be the most important degradation mechanism for Pt-based fuel cell electrocatalysts. Understanding key factors mitigating the dissolution and migration under realistic proton-exchange-membrane (PEM) fuel cells is crucial for improving their performance and durability. Using ordered and disordered PtCo electrocatalysts, we address how structural ordering and particle size can affect the dissolution of Co/Pt and their redeposition into the membrane upon catalyst accelerated durability test in PEM fuel cells by statistical scanning transmission electron microscopy (STEM) and spectroscopic analysis. Consistent with the improved performance and durability, we observe that both Co and Pt dissolution were mitigated in the ordered PtCo catalyst compared to the disordered one. The suppressed Pt dissolution was evidenced from the relieved particle coarsening and significantly suppressed Pt redeposition/migration in the membrane after the durability test. Moreover, we reveal an optimum particle size range between 2–5 nm for ordered PtCo catalysts, which favors the highest structural ordering degree and hence the highest retention of Co. These results provide a rationale for implementing ordered Pt intermetallic electrocatalysts in PEM fuel cells and further particle size optimization for improved durability.
Funder
Guangdong Natural Science Foundation for Distinguished Young Scholars
Natural Science Foundation of China
Basic Research Program of Shenzhen
Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献