Li Pre-Doping into Si Negative Electrodes Using Li-Naphthalenide Solutions with Various Ether Solvents For Next-Generation Batteries

Author:

Fukunishi Mika,Ishii Shunya,Himata Yusuke,Kondo Atsushi,Ozawa Fumisato,Saito MorihiroORCID

Abstract

Four ethers were compared as solvents of lithium naphthalenide (Li-NTL) solutions to pre-dope Li into Si electrodes. The solvents of the Li-NTL solutions affected the stability and equilibrium potential (V eq). X-ray diffraction, thermodynamic characterization and ultraviolet-visible (UV–vis) spectroscopy were used to clarify the effects of the solvation structure, the lowest unoccupied molecular orbital (LUMO) energy of the solvent molecule and the ion pair structure between Li+ ions and naphthalenide radical anions ([NTL]·−) on doping capacity. A Li-NTL solution having a low V eq and sufficient stability under potentials as low as that of Li metal was found to provide the highest pre-doping capacity. In particular, a 2-methyltetrahydrofuran (MeTHF) solution exhibiting the lowest V eq showed a pre-doping capacity as high as 3250 mAh g−1 after 24 h. UV–vis spectra and Walden plots indicated that a Li-NTL solution using MeTHF provided less dissociation than a tetrahydrofuran (THF) solution. The doping capacity is evidently determined by the V eq of the Li-NTL solution as a consequence of the dissociation equilibrium of the ion pair of the solvated Li+ ion and [NTL]·− radical ions.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3