Abstract
Supercapacitors, with the merits of high-power density, long durability, and remarkable safety, have already been used in the field of fast energy storage and conversion. However, their rapid self-discharge with spontaneous voltage decay results in the fast loss of the stored electric energy, severely limiting their practical application. Carbon materials have been widely used as the electrode materials for supercapacitors because of their large surface area, well-developed porous structure, and low-cost. Therefore, it is of great significance to understand the mechanisms and influencing factors, and further explore efficient suppressing strategies of the self-discharge behavior of carbon electrodes. In this review, we first introduce the self-discharge mechanisms including charge redistribution, Faradic reaction, and ohm leakage. Then, the key properties of porous structure, surface states, and metal impurities of carbon materials on the self-discharge behavior are discussed. Finally, we summarize some novel suppressing strategies and give perspectives on the future development of supercapacitors. This review provides an insight on the self-discharge of carbon-based supercapacitors, and can help to facilitate their widespread application.
Funder
National Natural Science Foundation of China
the Science Foundation of Xinjiang Autonomous Region
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献