Abstract
The emerging field of nanomaterials could be utilized in biosensors for addressing challenging applications due to its abundant strategic properties. Herein, a composite of multi-walled carbon nanotubes (MWCNTs) and poly (3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) was synthesized, and used as guiding layer on screen printed carbon electrode (SPCE) for lactate detection. Lactate plays a substantial role in health care applications. Fundamental characteristics of the composite modified SPCE were studied using FE-SEM, EDS, and Raman spectroscopy and sensor performance was analyzed by electrochemical methods. AFM was used to thoroughly study the screen-printed carbon electrode and as-deposited MWCNT/PEDOT:PSS composite film topography. Various parameters were optimized to achieve the best performance of lactate sensor. The developed sensor provided a wide linear range response (R2 = 0.97) from 1 mM to 10 mM for buffer samples with 35.224 μA mM−1 sensitivity. The proposed sensor was applied for to detect lactate in cancer (MCF-7) cells media. A calculated LOD 4.0 ± 5 μM (S/N) was achieved and the results showed a linear response up to 7 mM. As a result, the advanced approach could be applied for the detection of a range of metabolites using respective enzymes. This approach could open on-line lactate detection in organ-on-a-chip applications.
Funder
National Research Foundation of Korea
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献