Abstract
In this work, ≈25 μm thin titanium microporous layers (MPLs) with ≈2 μm small pores and low surface roughness were coated and sintered on top of ≈260 μm thick commercial titanium-powder-sinter sheets with ≈16 μm pores, maintaining a porosity of ≈40% in both layers. Serving as porous transport layers (PTLs) on the anode side in proton exchange membrane water electrolyzers (PEMWEs), these pore-graded, two-layer sheets (“PTL/MPL”) are compared to single-layer PTLs in single-cell PEMWEs. The PTL/MPL samples prepared here give a 3–6 mΩ cm2 lower high-frequency resistance (HFR) compared to the as-received single-layer PTL, which is attributed to a partial reduction of the TiO2 surface passivation layer during the MPL sintering process. For ≈1 μm thin anodes with an iridium loading of ≈0.2 mgIr cm−2, the use of an MPL leads to a ≈24 mV improvement in HFR-free cell voltage at 6 A cm−2. As no such benefit is observed for ≈9 μm thick anodes with ≈2.0 mgIr cm−2, mass transport resistances within the PTL/MPL play a minor role. Possible reasons for the higher catalyst utilization in ultra-thin electrodes when using an MPL are discussed. Furthermore, an MPL provides superior mechanical membrane support, which is particularly relevant for thin membranes.
Funder
German Federal Ministry of Education and Research
Publisher
The Electrochemical Society