Enhanced Electrochemical Performance of Hydrothermally Exfoliated Hexagonal Boron Nitride Nanosheets for Applications in Electrochemistry

Author:

Sharma Kanika,Puri Nitin K.ORCID

Abstract

Two-dimensional (2D) morphology of hexagonal boron nitride (h-BN), owing to its peculiar characteristics of non-toxicity and uniquely featured oxidation resistance has attracted extensive attention in electrochemical applications. Here, we report a facile top-down approach for the successful synthesis of hexagonal boron nitride nanosheets (h-BNNS) through a low-temperature hydrothermal method. The structural and spectroscopic characterizations have been performed using XRD, FT-IR, Raman and UV-Visible Spectroscopy that reveals incorporation of maximum induced strain, multifunctional groups and formation of few layers h-BNNS. The nanosheets morphology is confirmed by series of characterizations (SEM, TEM, and AFM) revealing the large lateral size and relatively low surface roughness of h-BNNS. The electrodes for electrochemical characterizations are prepared using the electrophoretic deposition (EPD) technique onto ITO substrates with the help of magnesium nitrate [Mg(NO3)2·6H2O] as a mediator. Electrochemical Studies has been performed in phosphate buffer saline (PBS) with Ferro-ferricyanide [Fe(CN)6]3−/4− as a redox couple. Cyclic voltammogram of h-BNNS (Ipa = 1.29 mA and Ipc = −1.23 mA) indicates 69.96% enhancement in redox peaks current and 71.04% rise in electro-active surface area with respect to Bulk h-BN. The electrochemical studies uncover the potential of h-BNNS in the development of electroanalytical devices in applications such as sensing, anticorrosion, energy conversion and energy storage applications owing to their enhanced redox peaks, large electroactive surface area, and reduced charge transfer resistance as well as the admittance of Warburg element.

Funder

Science and Engineering Research Board

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3