Mechanistic Studies of the Electrocatalytic Carbon–Bromine Cleavage and the Hydrogen Atom Incorporation from 1,1,1,3,3,3-Hexaflouroisopropanol

Author:

Rudman Kelly K.ORCID,Thapa BishnuORCID,Tapash Arifuzzaman,Mubarak Mohammad S.,Raghavachari KrishnanORCID,Hosseini SeyyedamirhosseinORCID,Minteer Shelley D.ORCID

Abstract

Electrochemical dehalogenation of polyhalogenated compounds is an inefficient process as the working electrode is passivated by the deposition of short-chain polymers that form during the early stages of electrolysis. Herein, we report the use of 1, 1, 1, 3, 3, 3-hexaflouroisopropanol (HFIP) as an efficient reagent to control C–H formation over the radical association. Debromination of 1,6-dibromohexane was examined in the presence of Ni(II) salen and HFIP as the electrocatalyst and hydrogen atom source, respectively. Electrolysis of 10 mM 1,6-dibromohexane and 2 mM Ni(II) salen in the absence of HFIP yields 50% unreacted 1,6-dibromohexane and ∼40% unaccounted for starting material, whereas electrolysis with 50 mM HFIP affords 65% n-hexane. The mechanism of hydrogen atom incorporation was examined via deuterium incorporation coupled with high-resolution mass spectrometry, and density functional theory (DFT) calculations. Deuterium incorporation analysis revealed that the hydrogen atom originated from the secondary carbon of HFIP. DFT calculations showed that the deprotonation of hydroxyl moiety of HFIP, prior to the hydrogen atom transfer, is a key step for C–H formation. The scope of electrochemical dehalogenation was examined by electrolysis of 10 halogenated compounds. Our results indicate that through the use of HFIP, the formation of short-chain polymers is no longer observed, and monomer formation is the dominant product.

Funder

Division of Chemistry

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3