Electrodeposition of Li-Ion Cathode Materials: The Fascinating Alternative for Li-Ion Micro-Batteries Fabrication

Author:

Behboudikhiavi Sepideh,Omale Joel Ojonugwa,Babu Binson,Piraux Luc,Vlad AlexandruORCID

Abstract

Li-ion microbatteries are the frontline candidates to fulfill the requirements of powering miniature autonomous devices. However, it still remains challenging to attain the required energy densities of > 0.3mWh cm−2 μm−1 in a planar configuration. To overcome this limitation, 3D architectures of LIMBs have been proposed. However, most deposition techniques are poorly compatible with 3D architectures because they limit the choice of current collectors and selective deposition of the active materials. Electrodeposition was suggested as an alternative for rapidly and reproducibly depositing active materials under mild conditions, and with controlled properties. However, despite the huge potential, electrodeposition remains underexplored for LIMB cathode materials, partly due to challenges associated with the electrodeposition of Li-ion phases. Herein, we review advances in the electrodeposition of Li-ion cathode materials with the main focus set on the direct, one-step deposition of electrochemically active phases. We highlight the merits of electrodeposition over other methods and discuss the various classes of reported materials, including layered transition metal oxides, vanadates, spinel, and olivines. We offer a perspective on the future advances for the adoption of electrodeposition processes for the fabrication of microbatteries to pave the way for future research on the electrodeposition of cathode materials.

Funder

CF-ARC

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3