The Use of LiFSI and LiTFSI in LiFePO4/Graphite Pouch Cells to Improve High-Temperature Lifetime

Author:

Logan E. R.ORCID,Eldesoky A.ORCID,Eastwood E.,Hebecker H.,Aiken C. P.ORCID,Metzger M.ORCID,Dahn J. R.ORCID

Abstract

The use of LiPF6 in Li-ion battery electrolytes provides sufficient stability, conductivity, and cost in most applications. However, LiPF6 has also been known to cause degradation in Li-ion cells, primarily from its thermal decomposition or hydrolysis to form acidic species. This work considers the use of imide salts lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an alternative to LiPF6 in LiFePO4/Graphite cells. The use of LiFSI or LiTFSI over LiPF6 improved cycling performance both in control electrolyte (no additives) and electrolyte containing 2% vinylene carbonate (VC). However, while metrics from ultra high precision coulometry, isothermal microcalorimetry, and storage experiments all agreed with long-term cycling results for cells with control electrolyte, the opposite was seen with 2VC electrolyte. Pouch bag experiments elucidated information about the origin of parasitic reactions in LFP/Graphite cells, showing that most parasitic reactions originate at the negative electrode. Additionally, pouch bag experiments reveal a more passivating graphite solid electrolyte interphase (SEI) for LiFSI + 2VC electrolyte, agreeing with long term cycling experiments. It is concluded that in control electrolyte, the use of LiFSI limits redox shuttles, Fe dissolution, and SEI decomposition, while in 2VC electrolyte, LiFSI introduces a minor self-discharge reaction that does not impact long-term cycling.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3