A New Approach to Modeling Solid Oxide Cell Reactors with Multiple Stacks for Process System Simulation

Author:

Tomberg M.ORCID,Heddrich M. P.ORCID,Sedeqi F.ORCID,Ullmer D.ORCID,Ansar S. A.ORCID,Friedrich K. A.ORCID

Abstract

Reactors with solid oxide cells (SOC) are highly efficient electrochemical energy converters, which can be used for electricity generation and production of chemical feedstocks. The technology is in an upscaling phase. Thereby demanding development of strategies for robust and efficient operation or large SOC reactors and plants. The present state of technology requires reactors with multiple stacks to achieve the appropriate power. This study aims to establish and apply a simulation framework to investigate process systems containing SOC reactors with multiple stacks. Focusing especially on the operating behavior of SOC reactors under transient conditions, by observing the performance of all cells in the reactor. For this purpose, a simulation model of the entire SOC reactor consisting of multiple stacks, pipes, manifolds, and thermal insulation was developed. After validation on stack and reactor level, the model was used to investigate the fundamental behavior of the SOC reactors and the individual stacks in various operation modes. Additionally, the influences of local degradation and reactor scaling on the performance were examined. The results show that detailed investigation of the reactors is necessary to ensure operability and to increase efficiency and robustness. Furthermore, the computing performance is sufficient to develop and validate system controls.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3