Multiphysics Simulation Study of the Electrorefining Process of Spent Nuclear Fuel from LiCl-KCl Eutectic Molten Salt

Author:

Zhao Ding,Yan LiumingORCID,Jiang Tao,Peng Shuming,Yue Baohua

Abstract

Electrorefining is an important unit operation for the pyroprocessing of spent nuclear fuel; however, the uncontrolled growth of uranium dendrites traps molten salt into the deposited uranium, increases the short-circuit risk, decreases the current efficiency, and thus hinders the engineering application of the electrorefining technology. In this study, the finite element method is applied to the study of the electrorefining dynamics subjected to convection, diffusion, electromigration, and electrode reaction. The velocity field, concentration field, electric field, and flux density field are evaluated. The local current density on the cathode is evaluated under different overall current densities, overpotentials, cathodic shapes and positions for the evaluation of dendritic growth. Finally, it is concluded that the uranium will be deposited priorly onto the cathode tip and the frontside of the cathode facing the anode, the position of the electrode and the shape of the cathode tip will not have significant influence to the priority of deposition, and a glass insulated tip can effectively improve the uneven growth of uranium dendrites on the cathode surface as proposed by Srihari et al. (Sep. Sci. Technol. 51, 1397).

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3